https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 7: Authentication

Instructor: Nikos Triandopoulos
February 12, 2026

A7
N

0

BROWN

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates

¢ Project 1 “Cryptography” is due next Thursday
¢ HW 1 is going out tomorrow
¢ (Tentative) Exams dates
¢ Midterm exam: March 12
¢ Covering primarily: Cryptography and Web Security
¢ Final exam: April 28 (reading period) or May 12 (exam date)

¢ Covering primarily: OS Security and Network Security

L ast class

¢ Cryptography

o Symmetric-key encryption in practice
¢ Computational security, pseudo-randomness

e Stream & block ciphers, modes of operations for encryption, DES & AES
o Introduction to modern cryptography

+ Integrity & reliable communication

¢ Message authentication codes (MACs)

¢ Authenticated encryption

¢ Cryptographic hash functions

Today

¢ Cryptography
+ Integrity & reliable communication
& Message authentication codes (MACs)
& Authenticated encryption
& Cryptographic hash functions
¢ Applications of cryptographic hash functions
¢ User authentication: something you know, are, have

¢ Password security and cracking

*On message
authentication

Recall: Approach in modern cryptography

Formal treatment

¢ fundamental notions underlying the design & evaluation of crypto primitives
Systematic process

¢ A) formal definitions (what it means for a crypto primitive to be “secure”?)

¢ B) precise assumptions (which forms of attacks are allowed — and which aren’t?)

¢ C) provable security (why a candidate instantiation is indeed secure — or not)?

Computational MAC security

Game Mac-forge 4 n(n) =1 iff 1.Vrfy(m't)=1&
2.m" notin @

MAC scheme

i n
M = (Gen, Mac, Vrfy) security parameter 1

m1
W ‘ Z =
{ 7‘,"*:_‘_;~’if SA\ M i
WSS m >
: Gen(1n) — k -
<€
t,
Mac(m;) — t; t .
m ,t
<€

We say thatMis secure if for all PPT 4, there exists a negligible function negl so that

Pr[Mac-forge 4 n(n) =1] < negl(n)

7z

Strong MAC

Game Mac-sforge g n(n) =1 iff 1.Vrfy,(mt")=18&
2. (m"t°) notin @

MAC scheme
= (Gen, Mac, Vrfy)

/:‘-‘?\i . P\ <
A/ N 7] t, AMac(k,) %
"L >

Gen(l”) — k < (mlz_l) (m21_2)

security parameter 1"

Mac(m;) — t; >

We say that M is strongly secure if for all PPT 4, there exists a negligible function negl so that

Pr[Mac-sforge 4 n(n) = 1] < negl(n)

8

(Strong) MAC w/ verification queries

Game Mac-sVforge 4 n(n) =1 iff 1.Vrfy,(mt")=18&
2. (m%t") notin 9

MAC scheme . -
M= (Gen Mac, Vriy) security parameter
m, or (my, t,)
/:‘“{4\ i»,"""‘\ <€
(§ SASA) M Z t, oracc/rej ﬂMac(k,)'Vrfy(k')
& >
\ m, or (m;, t,)
Gen(1%) —k = Q = (myty), (My,t)) ...
t,or acc/rej
Mac(m;) — t, >
m,t
<€

We say that I is strongly V-secure if for all PPT 4, there exists a negligible function negl so that

Pr[Mac-sVforge 4 p(n) =1] < negl(n)

5

Verification queries Vs. timing attacks on MAC verification

In game Mac-sVforge 4 n(n)

& queries to oracle Verf,() return acc/rej (i.e., a single bit)

In real life

¢ implicit tag verification is feasible (e.g., by detecting a difference in verifier’s behavior)

¢ but also an attacker may receive more than this 1-bit info via other “side channels”

*

*

*

Vrfy(m,t) of a canonical MAC returns acc only if t = Mac,(m)

if implemented using st rcmp, then comparison occurs byte by byte until first mismatch

thus, the time to return rej depends on position of the first unequal byte

i.e., that attacker may also receive timing-related information

10

Side-channel attack via tag verification w/ timing

o attacker A wishes to forge a verifiable s-byte tag t for target message m

*

*

*

assume that A knows t;, i.e., the first i bytes of tag t (forsomei=0,1, .., s-1)
forj=0, .., 255
¢ send verification query (m,t;) where t;, = t || j || (00)+1

¢ get response res; (probably rej) and measure time; spent for computation of res;

if time;« is the maximum measured response time, then sett,; = t; | | j*

¢ realistic attack

¢ forged code updates in Xbox 360 to load pirated games into the hardware

¢ exploited differences of 2.2msec between rejection times!

¢ 4096 queries are needed to recover a 16-byte tag!

11

Side-channel attack via tag verification (cont.)

Other side-channels can be used

*

*

Padding Oracle Attacks

Exploits leaked information about tag verification due to padding

¢ PKCS#7 specifies how messages are unambiguously padded (in modes of operations)
Attacker get additional information of whether the padding was correct

¢ E.g., if padding is correct message processing results in longer response time

12

Summary of message-authentication crypto tools

Yes Yes Yes
Crpspian | ore oot e e 150

14

7.0 Properties of
cryptographic
hash functions

Cryptographic hash functions

Basic cryptographic primitive input output
arbitrarily H short digest,
¢ maps objects to a fixed-length binary strings long string fingerprint,
“secure”
& core security property: mapping avoids collisions —

+ collision: distinct objects (x # y) are mapped to the same hash value (H(x) = H(y))

+ although collisions necessarily exist, they are infeasible to find

Important role in modern cryptography
¢ lie between symmetric- and asymmetric-key cryptography

¢ capture different security properties of “idealized random functions”

¢ qualitative stronger assumption than PRF

75

Hash & compression functions

Map messages to short digests

¢ ageneral hash function H() maps

¢ a message of an arbitrary length to a n-bit string

¢ acompression (hash) function h() maps
¢ along binary string to a shorter binary string

+ an [(n)-bit string to a n-bit string, with /(n) > n

16

input
arbitrarily
long string

input
[(n)-bit
string

output
n-bit
string

output
n-bit
string

Collision resistance (CR)

-
/7 .
[S0 M\

/7)) function H

-\

Hash

Attacker wins the game if x # x” & H(x) = H(x’)

"

description of H

A

H is collision-resistant if any PPT ‘A wins the game only negligibly often.

17

Weaker security notions

Given a hash function H: X — Y, then we say that H is
& preimage resistant (or one-way)

¢ if giveny €Y, finding a value x € X s.t. H(x) = y happens negligibly often
+ 2-nd preimage resistant (or weak collision resistant)

¢ if given a uniform x € X, finding a value x’ € X, s.t. x’# x and H(x’) = H(x)
happens negligibly often

¢ collision resistant (or strong collision resistant)

¢ if finding two distinct values X, x € X, s.t. H(x’) = H(x) happens negligibly often

18

19

7.0.1 Design framework

Domain extension via the Merkle-Damgard transform

General design pattern for cryptographic hash functions

¢ reduces CR of general hash functions to CR of compression functions

input output input output
arbitrarily H n-bit < l(n)-bit h n-bit
long string string string string

¢ thus, in practice, it suffices to realize a collision-resistant compression function h

¢ compressing by 1 single bit is a least as hard as compressing by any number of bits!

20

Merkle-Damgard transform: Design

Suppose that h: {0,1}*"— {0,1}" is a collision-resistant compression function

Consider the general hash function H: M= {x : |x|<2"} — {0,1}", defined as

o 5 3 .
Merkle-Damgard design Xy X2 e X Xsu=L
¢ H(x) is computed by applying L L L % L
h() in a “chained” manner o L | , i | g
over n-bit message blocks h [— h® B h —»l h' »QFH X)

+ pad x to define a number, say B, message blocks xj, ..., Xg, with |x;| =n

+ set extra, final, message block xg.; as an n-bit encoding L of | x|
o starting by initial digest z; = IV = 0", output H(x) = zg,4, Where z; = h3(z; 4 | | x;)

2

Merkle-Damgard transform: Security

If the compression function h is CR,
then the derived hash function H is also CR!

hS

hS

22

H*x)

Compression function design: The Davies-Meyer scheme

Employs PRF w/ key length m & block length n
¢ define h: {0,1}"*™ — {0,1}" as h(x] | k) = F,(x) XOR x

Security k 1 hik,),

¢ hisCR, if Fis anideal cipher

23

Well known hash functions

¢ MDS5 (designed in 1991)
¢ output 128 bits, collision resistance completely broken by researchers in 2004
¢ today (controlled) collisions can be found in less than a minute on a desktop PC
¢ SHAI1 —the Secure Hash Algorithm (series of algorithms standardized by NIST)
¢ output 160 bits, considered insecure for collision resistance
¢ broken in 2017 by researchers at CWI

¢ SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)

¢ outputs 224, 256, 384, and 512 bits, respectively, no real security concerns yet
¢ based on Merkle-Damgard + Davies-Meyer generic transforms

¢ SHAS3 (Kessac)
¢ completely new philosophy (sponge construction + unkeyed permutations)

24

SHA-2-512 overview

- Nx1024 bits

- L bits - -

Message | 1000000 ...0] £

e s e e e ..
P
P
P
SR E s s ...

te—— 1024 bits —»+«—— 1024 bits —»+ te«—— 1024 bits —»

- > - > - hash code
512 bits 512 bits 512 bits

-4 = word-by-word addition mod 2%¢

25

Current hash standards

Algorithm Maximum Block Size Rounds Message
Message Size (bits) Digest Size
(bits) (bits)
MD5 2°4 512 64 128
SHA-1 2% 512 80 160
SHA-2-224 2°4 512 64 224
SHA-2-256 2% 512 64 256
SHA-2-384 2128 1024 80 384
SHA-2-512 2128 1024 80 512
SHA-3-256 unlimited 1088 24 256
SHA-3-512 unlimited 576 24 512

26

ST

S o S o e e e SSes:
== e e SRR s
e e s e

= = e

= "*;J g&x‘ = "»"v‘-,m‘".:";_'" - =

= s
= e S Seesme o ee e

3&.
=

Generic attacks against cryptographic hashing

Assume a CR function h : {0,1}" — {0,1}"

¢ brute-force attack

¢ for x =0 to 2"-1 (sequentially, for each string x in the domain):

¢ compute & record hash value h(x)

¢ if h(x) equals a previously recorded hash h(y) halt & output collision on x # y
¢ birthday attack

¢ surprisingly, a more efficient generic attack exists!

28

Birthday paradox

“In any group of 23 people (or more), it is more likely (than not) that
at least two individuals have their birthday on the same day”

¢ based on probabilistic analysis of a random “balls-into-bins” experiment:

“k balls are each, independently and randomly, thrown into one out of m bins”

¢ captures likelihood that event E = “two balls land into the same bin” occurs

o analysis shows: Pr[E] = 1 - eklkl}/2m (1) = oé
=0,

o if Pr[E] =1/2, Eq. (1) gives k = 1.17 m* %8;?

© 0.6

o thus, for m = 365, k is around 23 (!) 205

| m1=3!65 §

¢ assuming a uniform birth distribution ©O03 |

k,,

B 5 23

0010 20 30 40 50 60 70 80 90 100
= Number of people

Birthday attack

Applies “birthday paradox” against cryptographic hashing

¢ exploits the likelihood of finding collisions for hash function h
using a randomized search, rather than an exhausting search

¢ analogy

¢ k balls: distinct messages chosen to hash @ @ @

¢ m bins: number of possible hash values

¢ independent & random throwing

¢ random message selection + hash mapping l I l I l I I | l I

binl bin2 bin m

30

Probabilistic analysis

Experiment

¢ k balls are each, independently and randomly, thrown into one out of m bins

Analysis

¢ the probability that the i-th ball lands in an empty bin is: 1-(i-1)/m

¢ the probability F, that after k throws, no balls land in the same bin is:
F,=(1-1/m)(1-2/m)(1-3/m)...(1-(k-1)/m)

o by the standard approximation 1 - x = e*: F, = e{l/m+2/m+3/m+ ..+ (k-1)/m) = g-k(k-1)/2m

¢ thus, two balls land in same bin with probability Pr[E] = 1 - F, = 1 - ek(k-1)/2m

¢ lower bound — Pr[E] increases if the bin-selection distribution is not uniform

31

What birthday attacks mean in practice...

¢ # hash evaluations for finding collisions on n-bit digests with probability p

Bits
n
16
32
64

128

256

384

512

Possible outputs
(2 s.f.) (H)
m

65,536
4.3 x10°
1.8 x101°
3.4 x 1038
1.2 x 1077
3.9x 10115
1.3 x 10154

10-18

<

<

6
2.6 x 1010
4.8 x 10%°
8.9 x 1048
1.6 x 1068

Desired probability of random collision

(2s.1.) (p)

10715 1012 10~-° 106 0.1% 1% 25% 50%
<2 <2 <2 <2 1 36 190 300
<2 <2 3 93 2900 9300 50,000 77,000
190 6100 190,000 | 6,100,000 1.9x108 6.1 x108 3.3 x10% 5.1 x10°

8.2x 10" 26x10'8 82x10' 2.6 x10'® 83 x 10" 2.6x10'8 1.4x10'9 2.2x10"°
1.5x10%" 4.8x10% 15x10% 4.8x10%% 1.5x10%7 4.8x10%7 26x10%8 4.0x10%8
2.8 x10%0 8.9 x 105" 2.8x10%% 8.9 x10%* 2.8 x10% 8.9 x 105 4.8x105 7.4 x 105
52x10% 1.6x107" 52x1072 1.6x107% 52x1075 1.6x 1076 8.8 x 107 1.4 x 1077

¢ form = 2" average # hash evaluations before finding the first collision is

1.25(m)%2= 1.25 x 2"/2

32

75%
430
110,000
7.2x10°
3.1x10"
5.7 x 1038
1.0 x 1058
1.9 x 1077

Overall

Assume a CR function h producing hash values of size n
+ brute-force attack

¢ evaluate h on 2" + 1 distinct inputs, enumerated by counting

¢ by the “pigeon hole” principle, at least 1 collision will be found
¢ birthday attack

+ evaluate h on (much) fewer distinct randomly selected inputs

¢ by “balls-into-bins” probabilistic analysis, at least 1 collision will more likely be found
¢ when hashing only 2"/2 distinct random inputs, it’s more likely to find a collision!
o

thus, achieve N-bit security, we need hash values of length (at least) 2N

33

34

7.1 Applications to
cryptography

Hash functions enable efficient MAC design!

Back to problem of designing secure MAC for messages of arbitrary lengths

¢ so far, we have seen two solutions

¢ block-based “tagging”

*

¢ based on PRFs

¢ inefficient

CBC-MAC

¢ also based on PRFs

¢ more efficient

35

rl11116][my r|[2]18]]m,

v

v

F F
:
| T | Trf .
|
F o)

rl1d]|8]m,

[1] Hash-and-MAC: Design

Generic method for designing secure MAC for messages of arbitrary lengths

¢ based on CR hashing and any fix-length secure MAC
m

\

m —s H H(m) Mac

\
t

¢ new MAC (Gen’, Mac’, Vrf’) as the name suggests

¢ Gen’: instantiate H and Mac, with key k

¢ Mac’: hash message m into h = H(m), output Mac,-tag ton h

¢ Vrf’: canonical verification
36

syl

Mac’

h = H(m)
Mac

—~ €

[1] Hash-and-MAC: Security

The Hash-and-MAC construction is a secure as long as
¢ His collision resistant; and

¢ the underlying MAC is secure

Intuition

¢ since His CR:

syl

authenticating digest H(m) is a good as authenticating m itself!

Mac’

h = H(m)
Mac

37

—~ €

[2] Hash-based MAC

+ so far, MACs are based on block ciphers

¢ can we construct a MAC based on CR hashing?

38

[2] A naive, insecure, approach

Set tagt as:
Mac,(m) = H(k| [m)

¢ intuition: given H(k| | m) it should be infeasible to compute H(k| |[m’), m’ # m

Insecure construction . X

xli
¢ practical CR hash functions L L L L

employ the Merkle-Damgard design

Zgiie h$ —Hx)

¢ length-extension attack
¢ knowledge of H(m;) makes it feasible to compute H(m;| [m,)

¢ by knowing the length of m;, one can learn internal state zz even without knowing m,!

39

[2] HMAC: Secure design

Set tagt as:

HMAC,[m] = H[(k®opad) || H[(k®ipad) || m

¢ intuition: instantiation of hash & sign paradigm

¢ two layers of hashing H
¢ upper layer
¢ y=H((k®@ipad) || m)
¢ y=H’'(m), i.e., “hash”
¢ lower layer
e t=H((k®opad) ||Yy)

e t=Mac' (ko V), i.€., “sign”

k |pad rm,
U\
IV—- hS
k opad
\\
v—- kI

40

I

e

kout

appcnd
padding

™\

hS

[2] HMAC: Security

If used with a secure hash function and according to specs, HMAC is secure

¢ no practical attacks are known against HMAC

41

42

7.2 Applications to
security

Generally: Message digest (= hash value = fingerprint)

Short secure description of data (primarily used to detect changes)

M| |r
random r

H(M)| [r)

Hash

Message
digest

A crypto hash function is not
an encryption scheme,
a MAC tag or signature,
or anything else
other than a random mapping

(thus collision resistant) into
a fixed-length hash domain.

Question: Does H(M) “conceal” M?

Answer: It depends on M’s message space & prob. distribution

43

Application 1: Digital envelops

A commitment scheme implements a physical envelop
¢ two operations
¢ commit(x, r)=C
¢ i.e., put message x into an envelop (using randomness r)
o commit(x, r)=h(x|] r)
¢ hiding property: you cannot see through an (opaque) envelop
¢ open(C, m, r) = ACCEPT or REJECT
¢ i.e., open envelop (using r) to check that it has not been tampered with
¢ open(C, m, r): checkifh(m || r)=?C

¢ binding property: you cannot change the contents of a sealed envelop

44

Application 1: Security properties

Hiding: perfect/computational opaqueness
¢ Similar to indistinguishability: commitment reveals nothing about message
¢ adversary selects two messages x4, X, which he gives to challenger
¢ challenger randomly selects bit b, computes (randomness and) commitment C; of x;
o challenger gives C, to adversary, who wins if he can find bit b (better than guessing)
Binding: perfect/computational sealing
¢ Similar to unforgeability: cannot find a commitment “collision”

¢ adversary selects two distinct messages x4, X, and two corresponding values ry, 15

& adversary wins if commit(x;, r;) = commit(x,, r5)

45

Example 1: Fair digital coin flipping

Problem

¢ To decide who will do the dishes: Alice is to call the coin flip & Bob is to flip the coin
¢ But Alice may change her mind, Bob may skew the result

Protocol

¢ Alice calls the coin flip x but only tells Bob a commitment C of x

¢ Bob flips the coin & reports the result R

Alice reveals her call x & Bob verifies that revealed call x “matches” commitment C

¢ If Alice’s verified call x matches Bob’s result, i.e., x = R, Alice wins; else Bob wins

46

Example 1: Fair digital coin flipping (cont.)

Protocol

*

*

*

*

Alice calls the coin flip x but only tells Bob a commitment C of x
Bob flips the coin & reports the result R
Alice reveals her call x & Bob verifies that revealed call x “matches” commitment C

If Alice’s verified call x matches Bob’s result, i.e., x = R, Alice wins; else Bob wins

Security

*

*

Hiding: Bob gains nothing by seeing Alice’s commitment C or skewing coin toss R

Binding: Alice cannot change her mind x after the coin R is announced

47

Application 2: Forward-secure key rotation

Alice and Bob secretly communicate using symmetric encryption
¢ Eve intercepts their messages and later breaks into Bob’s machine to steal the shared key

Alice Bob

key k

S g

S1=K h S h S h Sy h |Ske
X key

< leakage

48

Application 3: Hash values as file identifiers

Consider a cryptographic hash function H applied on a file F

¢ the hash (or digest) H(M) of F serves as a unique identifier for F
¢ “uniqueness”
¢ if another file F’ has the same identifier, this contradicts the security of H
¢ thus

o the hash H(F) of Fis like a fingerprint

one can check whether two files are equal by comparing their digests

Many real-life applications employ this simple idea!

49

Examples

3.1 Virus fingerprinting 3.2 Peer-to-peer file sharing

¢ When you perform a virus scan over your ¢ Indistributed file-sharing applications (e.g., systems
computer, the virus scanner application tries allowing users to contribute contents that are shared
to identify and block or quarantine programs amongst each other), both shared files and
or files that contain viruses participating peer nodes (e.g., their IP addresses) are

¢ This search is primarily based on comparing uniquely mapped into identifiers in a hash range

the digest of your files against a database of 4 \When 3 given file is added in the system it is

the digests of already known viruses consistently stored at peer nodes that are

¢ The same technique is used for confirming responsible to store files those digests fall in a
that is safe to download an application or certain sub-range

open an email attachment _ _ _
¢ When a user looks up a file, routing tables (storing

values in the hash range) are used to eventually
locate one of the machines storing the searched file

50

Example 3.3: Data deduplication

Goal: Elimination of duplicate data
¢ Consider a cloud provider, e.g., Gmail or
Dropbox, storing data from numerous users.

A vast majority of stored data are duplicates;
e.g., think of how many users store the same
email attachments, or a popular video...

¢ Huge cost savings result from deduplication:

+ a provider stores identical contents
possessed by different users once!

¢ this is completely transparent to end users!

Idea: Check redundancy via hashing

51

¢ Files can be reliably checked whether they are

duplicates by comparing their digests.

When a user is ready to upload a new file to the
cloud, the file’s digest is first uploaded.

The provider checks to find a possible duplicate,
in which case a pointer to this file is added.

Otherwise, the file is being uploaded literally

This approach saves both storage and bandwidth!

Application 4: Concealing stored passwords

Goal: User authentication Problem: How to protect password files
+ Today, passwords are the dominant means for e If password are stored at the server in the clear,
user authentication, i.e., the process of an attacker can steal the password file after
verifying the identity of a user (requesting breaking into the authentication server — this type
access to some computing resource). of attack happens routinely nowadays...

o This is a “something you know” type of user ¢ Password hashing involved having the server
authentication, assuming that only the storing the hashes of the users passwords.

legitimate user knows the correct password. , Thys evenifa password file leaks to an attacker,

¢ When you provide your password to a the onewayness of the used hash function can
computer system (e.g., to a server through a guarantee some protections against user-
web interface), the system checks if your impersonation simply by providing the stolen
submitted password matches the password password for a victim user.

that was initially stored in the system at setup.
52

Example 4: Password storage

Identity Password Identity Password

Jane qwerty Jane Ox471laa2d2
Pat aaaaaa Pat Ox13b9c32f
Phillip oct31witch Phillip 0x01cl42be
Roz aaaaaa Roz Ox13b9c32f
Herman guessme Herman 0x5202aae?2
Claire aq3wmsSoto!4 Claire 0x488b8c27

Plaintext

Concealed via hashing
Subject to “concealment” preconditions

If fully concealed, are we safe?

Any hash pre-image leads to impersonation
53

Application 5: Hash-and-digitally-sign

Very often digital signatures are used with hash functions
¢ the hash of a message is signed, instead of the message itself
Signing message M
¢ let h be a cryptographic hash function, assume RSA setting (n, d, e)
¢ compute signature o = h(M)4 mod n
¢ sendo, M
Verifying signature o
+ use public key (e,n)
¢ compute H=0¢mod n
¢ if H=h(M) output ACCEPT, else output REJECT

54

Application 6: The Merkle tree

An alternative (to Merkle-Damgard) method to achieve domain extension

d=h(h14||h48)

h(h12||h34)= his
h(h1||h2)= h;,

h58=h(h56||h78)

h1 hz s h7 h8

55

Example 6: Secure cloud storage

zs
S
Dropbox = /&

P>

L — files = (F1, F2, ..., F7, F8)

D < upload files)
2 ¥
files_

Example 6: Secure cloud storage

give me
(3)

1:4} file F1
S
Dropbox
P>
files files = (F1, F2, .., F7, F8)

4(;,_"
Y here it is, F1’
user

33 |
4 »
F1' = #@S@!# "@S5"... (altered)

Example 6: Secure cloud storage — per-file hashing

Bob wants to outsource storage of files F4, F,,...,Fgto Dropbox & check their integrity

¢ Bob stores randomr
(& keeps it secret)

3 ¢
¢ Bob sends to Dropbox D"mx Q@
¢ files Fy, Fy,...,Fg - files & hashes files = (F1, F2, ..., F7, F8)

¢ hashes h(r| |Fy), h(r|[|F,),..., h(r] |Fg) random r

Every time Bob reads a file F;, he also reads h(r| | F;) to verify Fs integrity h(rllzi' L

¢ any problems with writes? acc

58

Example 6: Secure cloud storage — per-file-set hashing

P
D
L — files = (F1, F2, .., F7, F8)

1. use CR hash function h to compute over all files a digest d, |d| << |F|

2. upload files <
2 Server user
Dropbox =

Example 6: Secure cloud storage — integrity checking

give me

:O file F1
3
Dropbox

files_

(3)

4 2. hereitis, F1’ - ~ 4. verification
server user
Dropbox “is F1’ intact?”

rej

3 ”proof” - ‘L

(or helper information) u

/

acc

Example 6: Secure cloud storage — verification

here it is, F1’
¥ - &
Dropbox +

—-— “proof” —— verification
m hel inf ti - :
ISEQe ek nioriation) u “is F1” intact?”

¢ user has

¢ authentic digest d (locally stored)

+ file F1’ (to be checked/verified as it can be altered)

¢ proof (to help checking integrity, but it can be maliciously chosen)
¢ user locally verifies received answer

rej
¢ combine the file F1’ with the proof to re-compute candidate digest d’ \L
¢ checkifd =d /

+ ifyes, then F1 is intact; otherwise tampering is detected! acc

Example 6: Data authentication via the Merkle tree
here it is, F1’

s @
Dropbox + d’ # d \L
—— “proof” verification ’ /
m (or helper information) il d=d —

digest is the green root hash d=h(hys || hgg)

h(h12||h34)=h14 h58=h(h56||h78)

h(hy||hy)= hy hys compute candidate d’
based on answer & proof

answer is orange hash
proof is red hash path h, h, h;, hsg leth;=h(F), 1<i<8

62

63

7.3 User authentication

User identification & authentication

|dentification
+ asserting who a person is
Authentication

¢ proving that a user is who she says she is

¢ methods
¢ something the user knows ﬂ
/7=

| kkkk 2N\
¢ something the user is (ﬁﬁﬂ\‘m\nl

¢ something user has

64

Does authentication imply identification?

Suppose that a user
+ provides her (login) name and

+ uses one of the three methods to authenticate into a computer system

¢ either terminal or remote server via a web browser

¢ when does user authentication imply user identification?

¢ not quite...

65

Example: Something you know

The user has to know some secret to be authenticated

¢ password, personal identification number (PIN), personal information like home
address, date of birth, name of spouse (“security” questions)

But anybody who obtains your secret “is you...”

¢ impersonation Vs. delegation

¢ you leave no trace if you pass your secret to somebody else

What if there is a case of computer misuse?

¢ i.e., where somebody has logged in using your username & password...
¢ Can you prove your innocence?

¢ can you prove that you have not divulged your password?

66

Thus...

¢ a password does not authenticate a person
o successful authentication only implies that the user knew a particular secret

+ there is no way of telling the difference between the legitimate user
and an intruder who has obtained that user’s password

+ unfortunately: this holds true for almost all of authentication methods...

67

68

7.3.1 Something you
know — password
authentication

Something you know

¢ passwords

¢ or PINs

e or answers to “security” questions (e.g., where did you meet your wife?)

69

Problems with passwords

Many attack vectors...

¢ password “live” in different “places:”
1) user’s brain, 2) channel & 3) authentication server

1) password guessing

¢ predict weak passwords

2) phishing & spoofing or cached passwords
¢ deceive users to reveal their password

3) leaked password files

+ steal user credentials

70

Password guessing

Infer passwords through guessing
¢ Low-entropy passwords

¢ To be easy to remember, passwords are often weak easy-to-predict secrets

¢ e.g., password is “Passwordl”
¢ Password reuse

¢ To be easy to remember, passwords are often reused across many authentication servers

¢ e.g., same password for all accounts

7zl

Distribution of password types

Graph from an old leaked password file One character
0%
5 - Other good
The point is: Most passwords are weak! asswords Two ng/sacwrs

14 % Three characters

14%

Words in
dictionaries or
lists of names
15%

Four characters,

all letters
14%

Six letters,
lowercase Five letters,
19% all same case

72 22%

Online dictionary attacks

¢ Direct brute-force or dictionary attacks against passwords
¢ employs only the authentication system
o attacker tries to impersonate a victim by trying
+ all possible (short length) passwords or
¢ passwords coming from a known dictionary
¢ (cf. offline brute-force or dictionary attacks using leaked hashed passwords)
¢ Countermeasure
¢ block login & lock account after many consecutive failed authentication attempts

¢ false negatives...

%3

Phishing & spoofing

*

|Identification and authentication through username and password provide
unilateral authentication

Computer verifies the user’s identity but the user has no guarantees about
the identity of the party that has received the password

In phishing and spoofing attacks a party voluntarily sends the password
over a channel, but is misled about the end point of the channel

Spoofing

o Attacker starts a malicious program that presents a fake login screen and
leaves the computer

¢ If the next user coming to this machine enters username and password on
the fake login screen, these values are captured by the malicious program

¢ login is then typically aborted with a (fake) error message and the spoofing
program terminates

¢ control returns to operating system, which now prompts the user with a genuine
login request

¢ thus, the victim does not suspect that something wrong has happened

¢ the victim may think that the password was mistyped...

Counteracting password spoofing

o display number of failed logins
¢ may indicate to the user that an attack has happened

¢ trusted path

¢ guarantee that user communicates with the operating system and not with a spoofing
program

¢ mutual authentication

¢ user authenticated to system, system authenticated to user

76

Phishing

¢ attacker impersonates the system to trick a user into releasing the password

¢ eg.,
¢ a message could claim to come from a service you are using

¢ tell you about an upgrade of the security procedures

¢ and ask you to enter your username and password
at the new security site that will offer stronger protection

¢ attacker impersonates the user to trick a system operator into releasing the
password to the attacker

& social engineering

Cached passwords

+ description of login has been quite abstract

¢ password travels directly from user to the password checking routine

¢ inreality, it will be held temporarily in intermediate storage locations

¢ e.g, like buffers, caches, or a web page

¢ management of these storage locations is normally beyond user’s control

¢ a password may be kept longer than the user has bargained for

78

Leaked password files

¢ Breach authentication server to steal user credentials

¢ e.g., plaintext passwords

¢ Countermeasures
¢ protect passwords via encryption (e.g., a symmetric-key cipher)

¢ subject to keeping the secret key secure against the server’s compromise...
+ hard to achieve in practice...

¢ concealed password via hashing

+ subject to meeting conditions for secret concealment via hashing...

P45

Protecting the password file

Operating system maintains a password file (with user names & passwords)

¢ attacker could try to compromise its confidentiality or integrity

¢ options for protecting the password file
¢ cryptographic protection
& access control enforced by the operating system

¢ combination of cryptographic protection and access control,
possibly with further measures to slow down dictionary attacks

80

Access control settings

o only privileged users must have write access to the password file

¢ an attacker could get access to the data of
other users simply by changing their password

¢ even ifitis protected by cryptographic means

o if read access is restricted to privileged users, passwords could be stored
unencrypted

¢ intheory—in practice, bad idea because of breaches

¢ if password file contains data required by unprivileged users, passwords must be
“encrypted”; such a leaked file can still be used in dictionary attacks

+ typical example is fetc/passwd in Unix

¢ many Unix versions store encrypted passwords in a shadow password file (not publicly
accessible)

Example: Password storage via hashing

Identity Password Identity Password

Jane qwerty Jane Ox471laa2d2
Pat aaaaaa Pat Ox13b9c32f
Phillip oct31witch Phillip 0x01cl42be
Roz aaaaaa Roz Ox13b9c32f
Herman guessme Herman 0x5202aae?2
Claire agq3wmsSoto!'4 Claire 0x488b8c27

Plaintext Concealed

Subject to “concealment” preconditions

If fully concealed, are we safe?

Any hash pre-image leads to impersonation
82

Hashing passwords is hot enough

An immediate control against password leakage through stolen password files, involves
concealing passwords stored at the authentication server via hashing

Why are offline dictionary attacks quite effective using leaked hashed passwords in practice?
¢ Most hashed passwords are weak passwords

¢ Thus, they can be “cracked”
¢ Invert the hash

¢ Find a 2" preimage of the hash

83

Password cracking

Given leaked hashed passwords, recover passwords
¢ Use exhaustive search by hashing over guessed passwords...
¢ brute-force attack: try all possibilities
¢ dictionary attacks: try all words in a dictionary & variations of them
¢ rainbow tables: try possibilities in a systematic way via a data structure
¢ These methods impose different time-space trade-offs on attacker’s workload
& preprocessing is often very useful, e.g.,

¢ precompute a dictionary-based set of password-hash pairs

+ use precomputed set for cracking any newly leaked hashed passwords

84

Countermeasures

Now preprocessing is useless;

Password salting U, h(PU]|SU), SU or it must be user specific!

¢ to slow down dictionary attacks

¢ a user-specific salt is appended to a user’s password before it is being hashed
¢ each salt value is stored in the clear along with its corresponding hashed password

¢ if two users have the same password, they will have different hashed passwords

¢ example: Unix uses a 12 bit salt
Hash strengthening

¢ to slow down dictionary attacks

¢ apassword is hashed k times before being stored

85

86

7.3.2 Something you are
— biometric
authentication

Something you are

¢ biometric schemes use people’s unique physical characteristics
¢ traits, features

¢ face, finger prints, iris patterns, hand geometry
¢ biometrics may seem to be the most secure solution for user authentication

¢ biometric schemes are still quite new

Biometrics: Something you are

|>49801900u07 |

|>11982814+21]
|>05568704564 |

Problems with biometrics

¢ Intrusive

¢ Expensive

+ Single point of failure
¢ Sampling error

o False readings

¢ Speed

¢ Forgery

89

Fingerprint

¢ Enrolment

+ reference sample of the user’s fingerprint is acquired at a fingerprint reader
¢ Features are derived from the sample

¢ fingerprint minutiae

¢ end points of ridges, bifurcation points, core, delta, loops, whorls, ...

+ For higher accuracy, record features for more than one finger
o Feature vectors are stored in a secure database
¢ When the user logs on, a new reading of the fingerprint is taken

¢ features are compared against the reference features

|dentification Vs. verification

¢ Biometrics are used for two purposes

¢ Identification: 1:n comparison, i.e., identify user from a database of n persons

¢ \Verification: 1:1 comparison, i.e., check whether there is a match for a given user
¢ Authentication by password

o clear reject or accept at each authentication attempt
¢ Biometrics

¢ stored reference features will hardly ever match precisely

features derived from the current measurements

O

Failure rates

¢ Measure similarity between reference features and current features
¢ User is accepted if match is above a predefined threshold
¢ New issue: false positives and false negatives
¢ Accept wrong user (false positive)
¢ security problem
¢ Reject legitimate user (false negative)

¢ creates embarrassment and an inefficient work environment

07

Forgeries

Fingerprints, and biometric traits in general, may be unique but they are no secrets!
¢ you are leaving your fingerprints in many places
¢ rubber fingers have defeated commercial fingerprint-recognition
¢ minor issue if authentication takes place in the presence of security personnel
¢ when authenticating remote users additional precautions have to be taken

& user acceptance: so far fingerprints have been used for tracing criminals

93

94

7.3.3 Something you
have — authentication
tokens

Something you have

user presents a physical token to be authenticated
¢ keys, cards or identity tags (access to buildings), smart cards
¢ limitations
¢ physical tokens can be lost or stolen
¢ anybody in possession of token has the same rights as legitimate owner
¢ physical tokens are often used in combination with something you know
¢ e.g. bank cards come with a PIN or with a photo of the user

o this is called: 2nd-factor authentication or multi-factor authentication

Tokens: something you have

Time-Based Token Authentication

Login: mcollings
Passcode: 2468159759

PASSCODE TOKENCODE

Token code:
Changes every
60 seconds

Clock
synchronized to
UcCT

Unique seed
96

Problems with tokens

Inconvenience
Lost token
Stolen token
Cloned token

L U, ARG SO O ¢

Side-channel attacks (for key exfiltration)

S5

—— e

e 2 oo

S o S o e e e
e S S SRR —— -
e e e

= = e

W%@t@ﬁ%&@_ S = = e e e = S
e R e N e e e e et =
= — — — — — : — = =

= R o T
=z = = e e =z

3&.
=

Federated identity management

A

Identity Manager
User)« = (performs
P Authenticated

authentication) Identity
/ | \<
Application Application
(no authentication) (no authentication)
Application

(no authentication)

Sis

SSO: Single Sign-On

User s Slngle Slgn_on Identification and
Shell Authentication

Y

| Credentials
Password Token
_____ Authentication | | Authentication | | Authentication
Application Application
Application

100

More details on SSO

¢ Having to remember many passwords for different services is a nuisance
¢ with a single sign-on service, you have to enter your password only once

¢ an alternative solution: password managers

¢ A simplistic single-sign on service could store your password and
do the job for you whenever you have to authenticate yourself

¢ such a service adds to your convenience but it also raises new security concerns
¢ System designers have to balance convenience and security
¢ ease-of-use is an important factor in making IT systems really useful

¢ but many practices which are convenient also introduce new vulnerabilities

101

More on authentication

If dissatisfied with security level provided by passwords?

¢ you can be authenticated on the basis of
¢ something you know
¢ something you have
¢ something you are
¢ what you do — behavioural

¢ where you are - location based

102

What you do

*

people perform mechanical tasks in a way that is both repeatable and
specific to the individual

experts look at the dynamics of handwriting to detect forgeries

users could sign on a special pad that measures attributes like writing
speed and writing pressure

on a keyboard, typing speed and key strokes intervals can be used to
authenticate individual users

more recently behaviours from one’s mobile phone have been studied

103

Where you are

¢ some OSs grant access only if you log on from a certain terminal

¢ a system administration may only log on from an operator console
but not from an arbitrary user terminal

¢ users may be only allowed to log on from a workstation in their office
¢ common method in mobile and distributed computing

¢ Global Positioning System (GPS) might be used to established the precise
geographical location of a user during authentication

7.4 Password
security & cracking

105

Password cracking methods

¢ Brute force
¢ Try all passwords (in a search space) for inverting a specific password hash
¢ Eventually succeeds given enough time & CPU power
¢ Dictionary
¢ Precompute & store by hash (hash, password) pairs of a set of likely passwords
¢ Fast look up for password given the hash
¢ Large storage & preprocessing time
¢ Rainbow table
o Partial dictionary of hashes

¢ More storage, shorter cracking time

106

Brute force cracking: Method

Try all passwords (for a given password space)

Parallelizable
Eventually succeeds given enough time & computing power

Best done with GPUs and specialized hardware (e.g., FPGAs or Asic)

L O

Large computational effort for each password cracked

107

Brute force cracking: Search space

Assume a standard keyboard with 94 characters

Password length Number of passwords

5 94~ =7,339,040,224

6 945 = 689,869,781,056

7 947 = 64,847,759,419,264

3 948 = 6,095,689,385,410,816
9 94° = 572,994,802,228,616,704

Brute force cracking: Computational effort

Say, the attacker has 60 days to crack a password by exhaustive search
assuming a standard keyboard of 94 characters.

How many hash computations per second are needed?

¢ 5 characters: 1,415
¢ 6 characters: 133,076
¢ 7 characters: 12,509,214

¢ 8characters: 1,175,866,008
¢ 9 characters: 110,531,404,750

109

Dictionary attack: Method

¢ Precompute hashes of a set of likely passwords
+ Parallelizable

o Store (hash, password) pairs sorted by hash

o Fast look up for password given the hash

¢ Requires large storage and preprocessing time

110

Dictionary attack: Example

STEP 1: Make a plaintext password file of bad passwords (called "wordlist’):

triandopl2345
letmein

zaglzaqgl
STEP 2: Generate MD5 hashes:

for 1 1n Slcat wordlist); do

echo —p "Si" L mds5 | 3y g " *_ W= done > hashes

STEP 3: Get a dictionary file.

E.g., using rockyou.txt which lists most common passwords from the RockYou hack in 2009.

111

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/

Dictionary attack: Intelligent Guessing

Try the top N most common passwords
¢ e.g., check out several lists of passwords on known repositories

Try passwords generated by
¢ adictionary of words, names, places, notable dates along with
¢ combinations of words & replacement/interspersion of digits, symbols, etc.
¢ asyntax model
¢ e.g., 2 words with some letters replaced by numbers: elitenoob, eliten00b, ...

¢ a Markov chain model or a trained neural network

112

Password Cracking Tradeoffs

1980 - Martin Hellman
¢ Achieves (possibly useful) time Vs. memory tradeoffs

¢ l|dea: Reduce time needed to crack a password by using a large amount of memory
¢ Benefits
¢ Better efficiency than brute-forcing methods

¢ Flaws

+ This kind of database takes tens of memory’s terabytes

113

Password Cracking Tradeoffs (cont.)

Time |
Brute force

Ra nbow
table

Dictionary

Storage
114

Password Cracking Tradeoffs (cont.)

Brute-force: no preprocessing, no storage, very slow cracking

Dictionary: very slow preprocessing, huge storage, very fast cracking

Rainbow tables: tunable tradeoff between storage space & cracking time

¢ Trade more storage for faster cracking

I) T T

Password Brute-force All costs
space of Dictionary n n ~0 relate

size n Rainbow table, mt2 = n mt mt? t2/2 to hashing

115

Rainbow tables

¢ Use data-structuring techniques to get desirable time Vs. memory tradeoffs
¢ Main challenge

¢ Cryptographic hashing is random and exhibits no patterns

¢ E.g., noordering can be exploited to allow for an efficient search data structure
¢ Main idea

¢ Establish a type of “ordering” by randomly mapping hash values to passwords

¢ E.g., via a “reduction” function that produces password “chains”

116

Reduction function

Maps a hash value to a pseudorandom password from a given password space

¢ E.g., reduction function p = R(x) for 256-bit hashes & 8-character passwords from a
64-symbol alphabet a;, a5, ..., a4

+ Split hash x into 48-bit blocks x;, X, ..., Xs and one 16-bit block xg
¢ Computey=xD x5 ... D Xsg

+ Splity into 6-bit blocks y4, v, ..., yg

¢ letp=ayy,ay, .., ayg

¢ This method can be generalized to arbitrary password spaces

117

Password chain

¢ Sequence (of size t) alternating & hashes
o Start with a random password p;
¢ Alternate using cryptographic hash function H & reduction function R

¢ X = H(pi), pir1 = R(x;)
¢ End with a hash value x;

= = - @ -

P1 X1 P2

118

Hellman’s method

o Starting from m random passwords,

build a table of m password chains, (

each of length t

¢ The expected number of distinct
passwords in a table is QQ(mt)

¢ Compressed storage:

¢ For each chain, keep only the first

password, p, and the last hash value, z &=

¢ Store pairs (z, p) in a dictionary D
indexed by hash value z

119

t

L
]
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —
 — — —

Classic password recovery

Recovery of password with hash value x
¢ Step 1: traverse the suffix of the chain starting at x
* y=X;
¢ while p = D.get(y) is null
¢ vy =H(R(y)) //advance
o if i++ >t return “failure” //x not in the table
¢ Step 2: traverse the prefix of the chain ending at x
¢ whiley=H(p) #x
¢ p=R(y) //advance
o if j++ > t return “failure” //x not in the table

e return p //password recovered
120

&

—

|:>m|:;>

Phase 2

Phase 1
5> »

High-probability recovery

Collisions in the reduction function result in recovery issues

¢ Mitigate the impact of collisions, using t tables
with distinct reduction functions R

¢ If m-t2 = O(n), n passwords are covered with high probability 1, -

Performance

¢ Storage: mt cryptographic hash values
& Recovery: t2 hash computations & t? dictionary lookups

¢ E.g,n=1,000,000,000, m=t=nl3 mt=t2=n23=1,000,000

121

Rainbow table

— et

Instead of t different tables, use a single table with [!
¢ O(m-t) chains of length t
¢ Distinct reduction function at each step

¢ Visualizing the reduction functions with
a gradient of colors yields a rainbow m-t—

Performance

¢ Storage : mt hash values (as before)

¢ Recovery : t2/2 hash computations &

t dictionary lookups (lower than before)

122

Rainbow-table password recovery

fori=t, (t-1),..,1

Final loop: from 1 to i Inner loop: fromitot
y = x //x is password hash we want to crack -
Ri t-1
forj=i,.. t-1//traverse fromitot P VX : ‘
y = H(R(y)) //advance B R

if p = D.get(y) is not null //candidate position i

forj=1..i-1//traverse from 1toi
Worst-case # of hashing

p = R(H(p)) //advance 1+2+ .. +(t-1)+1=t/2

if H(p) = x return p //password recovered = g 1
2
else return “failure” //x not in the table o) 3 3 : 3
P ORORRRODR D]
return “failure” //x not in the table o e e e e e e e e |

123

